
Badgelife 101
Slides & Resources: https://1337.fyi/badgelife101

https://1337.fyi/badgelife101

About Me

● Hacker & Maker
● Tech Lead, Google Red Team
● Mostly self-taught in electronics

○ Not an EE, so you don’t need to be either!
● @matir@infosec.exchange on Mastodon

Any opinions included in this presentation are my own, and not my employer’s.
Alphabet/Google does not endorse any of the products/services discussed.

Quote

“Hack the Planet!”

- Dade Murphy

(The Unicorn speaking before me reminded me I need a quote.)

What is Badgelife?

● Wearable Electronic Art
○ Non-electronic badges may be seen as well, but

we’ll only consider electronic badges
● Self-Expression
● Interaction
● Sometimes Conference/Event Admission
● Hackaday Documentary:

https://youtu.be/G2fHKRONc6U

Images: http://www.grandideastudio.com/defcon-14-badge/,
https://hackaday.com/2021/08/05/hands-on-def-con-29-badge-embraces-the-new-normal/,
https://hackaday.com/2019/09/19/pictorial-guide-to-the-unofficial-electronic-badges-of-def-con-27/

https://youtu.be/G2fHKRONc6U
http://www.grandideastudio.com/defcon-14-badge/
https://hackaday.com/2021/08/05/hands-on-def-con-29-badge-embraces-the-new-normal/
https://hackaday.com/2019/09/19/pictorial-guide-to-the-unofficial-electronic-badges-of-def-con-27/

My Badgelife

*

*

* Collaboration

Other Applications
DIY Electronic Ornaments Anyone? Name Badges

Setting Expectations

● I’m assuming little knowledge of electronics, but stop me with questions
anytime!

● I hope to get you an understanding of the workflow and basics, but there will
be some gaps left. This could be a whole day training :)

● I’ll link resources to help fill those gaps.

This will NOT cover anything involving "mains" voltage! Use only
batteries, USB, or a commercial DC power supply for your Badgelife
projects.

Quick Glossary

● Badge - PCB, usually with electronics, designed to be worn at an event
● SAO - S****y Add On – A semi-standardized connector for building small

“add-ons” to badges
● PCB - Printed Circuit Board, the base material for electronic boards
● MCU - Microcontroller, a small embedded processor containing

CPU/RAM/Flash in one package
● IC - Integrated Circuit, a component that integrates multiple “basic”

components into one. Often black rectangles with many leads.
● UART - Universal Asynchronous Receiver/Transmitter. Basically an

embedded serial port.

Steps Involved

1. Concept
2. Schematic
3. Prototype (Breadboard)
4. Firmware
5. Layout
6. Prototype (PCB)
7. Flashing/Debugging
8. Distribution

Steps Involved

Concept Schematic Breadboard Layout

Firmware

PCB
Flashing/
Debugging

The Concept

Goals

● Style/Artwork
○ “Just for Fun”

● Group Membership
○ Identity
○ CTF Teams
○ Village Supporters

● Interaction
○ Infrared
○ RF
○ Physical Connections

● Event Access

Constraints (Hard Limits)

● Budget
○ BOM cost – Cost of components on each

unit
○ Total cost - BOM Cost + Production Costs

+ Tooling
● Time Budget

○ It will take longer than you think, I promise.
○ Manufacturing takes time

● Power Budget
○ Battery powered, so have limits
○ Newer tech is making a lot more possible

in this space

Considerations

● It’s a wearable
○ Attachment: Lanyard Holes? Pin?
○ Sharp Edges are no fun
○ Through-hole component pins are sharp
○ Size/Weight – again, it’s a wearable :)
○ Heat – can be a concern if high power

drain

● Overreaching
○ You may have a great idea, but can you

implement it in time?
● Hardware Supply Chains

○ Some components can easily be
substituted – resistors, capacitors, LEDs,
etc.

○ Others not so much – microcontrollers,
radios, specialty chips

Power Options

● Coin Cell
○ 3V, can run most microcontrollers
○ Very low current capacity
○ Cheap

● Alkaline Batteries
○ Need 3+ to reliably get ~3.3V from a

voltage regulator
○ Cheap but heavy

● LiPo Pouch Cells
○ Flat
○ Physically Unprotected
○ Buy only with protection board!

● Specialty Batteries
○ A123 Lithium Battery, etc.

Tools

Software

● Electronic Design Automation (EDA)
○ KiCad - FOSS, popular in badgelife circles
○ Eagle - Now part of Autodesk Fusion

■ Very Limited Free Version
○ Altium - High End Professional Software
○ EasyEDA - Web Based, Limited

● Firmware Tools
○ gcc-based tool chains (open source, many

architectures)
○ MPLAB for Microchip Devices
○ Arduino for supported MCUs

● Debugging Tools
○ OpenOCD (JTAG/SWD)
○ gdb (GNU Debugger)

● Flashing Tools
○ OpenOCD
○ flashrom

Hardware Tools

● Multimeter
● Soldering Iron
● Programmer/Debugger

○ Depends on MCU Choice
● UART/Serial Adapter

○ Unless MCU supports USB
● Logic Analyzer (nice, but optional)
● Hot Air Station (nice, but optional)

Schematic Design

Schematic Concepts

● Representation of logical electrical
connections between components

● Drawn in EDA tool
● Labeled connections are “virtual”

connections
● Standardized symbols

Electronics Basics: Voltage

● Voltage, also called potential, is the
difference between charges in two parts of
a circuit

○ DC circuits have a continuous supply
voltage

○ AC, as in wall outlets, has voltage regularly
cycling

● By convention, an arbitrary point is
designated as “Ground” or “0V”

● In most DC circuits, this will be the lowest
voltage point in the circuit (so all other
voltages are positive)

Electronics Basics: Current

● Current is the rate of flow of electric
charge through a conductor

● Measured in “amps”
● Current is “pulled” – you can safely use a

battery or power supply with a higher
rating than the current you need to draw

Basic Components

● Battery, Power Source
○ Provides power to run

● Resistor
○ Resists the flow of current in a linear

fashion
● Capacitor

○ “Buffers” electrical charge
○ In Badgelife, mostly for stabilizing power

supplies
● Diode

○ Current flow in one direction
○ LEDs also emit light!

Relationships

Power (Watts) = Voltage (Volts) * Current (Amps) Voltage (Volts) = Current (Amps) * Resistance (Ohms)

(Ohm’s Law)

Schematic Symbols

Voltage Regulation

● You cannot just use a resistor to “drop”
voltage – the voltage drop depends on the
current

● Voltage regulators actively control output
voltage

● Linear regulars are simple, but waste
excess power as heat

● Switching regulators are complex, but
much more efficient

Linear

Switching

Series/Parallel Circuits

Series
Voltage Divided, Current Same

Parallel
Voltage Same, Current Separated

LEDs!

● Have a roughly fixed voltage drop across
them

● Need to have current limited (or they glow
very brightly very briefly)

● ~20mA is a typical max, but check the
datasheet, 5mA is usually plenty with
modern LEDs

● Vsupply = Vled + I*R

Schematic Rules of Thumb

● Group things by function
○ Power Supply
○ Microcontroller & supporting (reset,

programming header, etc.)
○ LEDs/visual
○ Peripherals

● Positive voltage at top, ground at bottom
● Current in from left, out to right
● Use named nets instead of dragging wires

everywhere

Example Schematic

Live Demo!

Your Turn 😼
● Using KiCad, create a schematic with the following:

○ 1 Battery
○ 6 parallel sets of 1 LED + 1 Resistor in Series
○ Connect positive side of series circuits to positive of battery and negative to negative

+ (Anode) - (Cathode)

Arrow points in direction of current flow.

Early Prototype

Breadboard Prototype

Can be whole circuit, or just some parts for
testing.

Useful:

● Dev boards from MCU vendor
● Breakout boards for components
● Variable power supply

Firmware

Firmware Basics

● Firmware is the code executed by your
microcontroller

● Without it, nothing happens
● Needs to be flashed to MCU (or external

storage)
● Good time to start with breadboard
● May need to remember bitwise operations

Firmware Challenges

● No OS Facilities
● Flash to iterate (unless emulated)
● Not threaded, no process scheduling

○ Real-time OS (RTOS) can get you
cooperative multi-tasking

● Limited human I/O (maybe a serial port)
● Documentation may be… variable

Controlling Pins

● Exact mechanism depends on your MCU
● Generally, 2 things need to be done

○ Set pin to output or input mode
○ Set pin state high or low to control
○ High = input voltage
○ Low = 0V

Hardware Peripherals

● VERY MCU Dependent
● Timers

○ Count without using main CPU
○ Trigger Interrupt

● Hardware PWM
○ Great for controlling brightness of LEDs

● SPI/I2C
○ Useful for interfacing with other chips

PCB Layout

PCB Basics

● Printed Circuit Boards are the layered
boards that hold all the components

● Main part of a badge
● Layers

○ Silkscreen (markings)
○ Soldermask (main color, protects copper)
○ Copper (electrical connections)
○ Fiberglass (typically)

● 2 Copper Layers most common
○ More adds cost and complexity
○ “Vias” are connections between layers

Image: SF Circuits

Footprint Matching

● Schematic has logical representation, but
nothing about physical form factor of
components

● Assigning “footprints” is the process to
match the logical to the physical

● Most common components have footprints
in libraries, but you might need to create
your own sometimes (though distributors
like Digikey may offer footprints for many
components)

EDA Layers

● Copper
○ Carries Electrical Current
○ Usually a "positive" layer in software

(where drawn, there will be copper)
● Soldermask

○ Prevents shorts, solder from sticking
○ A "negative" layer in software (where

drawn, there will be holes in soldermask)
● Silkscreen

○ Printed on top of soldermask
○ A "positive" layer (where drawn, there will

be ink)

● Paste
○ Solder paste for assembly
○ Positive layer (where drawn, there will be

paste)
● Edge Cuts/Mechanical

○ Defines outline
○ Drilled/milled/etc.

Design Rules

● Each “fab” (fabricator) has rules for what
they can produce

● Defines minimums for attributes
○ Trace width
○ Trace Separation
○ Drill Holes (vias)
○ Soldermask width

● 8 “mil” is usually safe for traces and
clearances

○ 8/1000 of an inch
○ 0.2mm

● Design Rule Check (DRC) can help spot
errors!

Badgelife PCB Design

● Art & Outline First
○ Most non-badgelife PCBs will worry about

this *last*, but since Badgelife is about
design, start here

○ KiCad can directly import SVG for outline
layers

● Tools for Art on PCB
○ KiCad SVG Import
○ KiCad Image Converter (for raster images)
○ Gerbolyze will do halftone images
○ svg2shenzhen

Source: https://www.tindie.com/products/makerqueenau/space-girl-soldering-kit/

Schematic -> PCB

● Import Schematic into PCB Tool

● Layout components first
○ Visually critical (LEDs, displays, etc. that

are part of the art)
○ Major components (microcontroller, other

ICs)
○ Add minor components (resistors,

capacitors)
● May need to shift during layout

Routing Traces

● Traces connect all the components
● You will see thin lines prompting you to

connect certain components – this is the
“rat’s nest” you are cleaning up

● Cannot cross other unrelated traces
without switching to another layer (short
circuit)

● A bit of an art form
● You can use the “autorouter” but the

results may not be appealing

Pre-Fab Checklist

● DRC Run and Clear?
● Outline Layer complete? (Edge.Cuts)
● Mounting Hardware?
● Corners Rounded?
● Connections for Debug/Programming?
● Renders look right?

Sending to Fabricator

● Export as Gerbers and Drill Files
○ Industry standard formats for PCBs

● Use a Gerber Viewer to verify everything
looks okay

● Upload to Fabricator
● Pick Options, Send Order
● (Hopefully Not) Realize your mistakes as

soon as fabrication is in process.

Which Fab?

● OSH Park
○ Quick Prototype Turns
○ Very High Quality
○ Pricey in Quantity
○ Purple or Clear mask
○ Excellent Support

● JLCPCB (Shenzhen)
○ Very popular
○ Many colors
○ Much cheaper

● pcbshopper.com

Assembly

PCB to Badge?

DIY

● Requires soldering skill and tools
● Great for prototypes
● Not great at scale

○ It’s doable for less complex designs if you
plan enough time

● If you’re using surface mount components,
much easier with hot air

PCB Assembly

● May limit choice of components
● Setup cost may be high for prototypes
● Great for production runs
● Through-hole components will dramatically

raise costs
● Requires panels that can run through

automation

Flashing/Debugging

Flash and Debug Interfaces

● JTAG is a standard for debug of a variety
of cores, requires 6+ pins

● SWD is a reduced form of JTAG, requires
as few as 3 pins, and is ARM-specific

● SPI is commonly used for interfacing
between chips, but also for programming
AVR microcontrollers, with 5-6 pins

● Tigard is a great tool for both Flash and
Debug

● Hopefully you have a program/debug
header :)

Flashing

● Very microcontroller dependent
○ Most ARM can be flashed over debug port

(SWD)
○ ESP32 family over Serial Port (UART)
○ AVR via SPI-like interface

● Different hardware to interface with each,
although FT232H-based boards can talk to
all 3 with various software

Debugging

● Often same interface as flashing
○ ESP32 needs JTAG for debug, UART for

Flash
● Sometimes can use gdb, sometimes need

specialized tools
● Almost all MCUs have serial (UART) ports,

so printf debugging might be possible
○ Unless you crash before then
○ Or corrupt memory used by the UART

Pitfalls/Lessons Learned

Basic Tips

● Assume everything will take much longer
than you expect

● Keep your design in a git repository so you
can roll back if needed

○ KiCad files are plain text, but not really
editable traditionally, so don’t try
merges/diffs/etc.

● Make your first project(s) simple
● Assume a couple of prototype cycles
● Print PCB layout on paper and place major

components if you have them (check
footprints/spacing/size)

Recommended MCUs

● ATMega Series
○ Used in Arduino, Simple, Widely

Documented
● Atmel SAMD21/SAMD51

○ ARM-based, well documented, some
Arduino compatible

● Raspberry Pi RP2040
○ ARM-based, well documented, good

community resources, very capable
○ Needs external flash though

● ESP32
○ Use only if you need BT/WiFi
○ Battery life will suffer

Datasheets Are Critical

● They can be hard to read, but are full of
useful information

○ Voltage Limits
○ Current Consumption
○ Pinouts
○ Recommended/Reference Designs*

My #fails

● LED brightness/current curve is highly
variable from exact part to exact part

● Double check footprints
○ And not just the pins/pads, also the

physical outline
● Imagining I will hand-assemble 50 badges
● Ordering PCBs without key components

already ordered
● Wrong footprint for same component

○ Many components are available in several
packages

● Ordered wrong part (1.8V regulator
instead of 3.3V)

Near-fails (caught before production)

● Forgot a programming pin
● Battery holder loads from side, but points

at another component blocking the holder
● Not measuring how far from the edge

lanyard holes should be
● Wrong footprint for same component

○ Yeah, that’s been done more than once…
or twice

By Zerodamage - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=2017476
5

Hands On!

Suggested Footprints for Demo

● LEDs: LED_0603_1608Metric
● Resistors: R_0603_1608Metric
● Battery: BatteryHolder_Keystone_3034_1x20mm

Finish PCB Design

● Assign Footprints
● Start PCB Layout
● Import Components
● Import SVG for Outline
● Place Components
● Route Components
● (Bonus) Export Gerbers and use Gerber Viewer to validate
● (Bonus Bonus) Finalize your design, add art of your choice, and fab with

OSHPark (or similar)!

You can use the example schematic from GitHub if you didn't get it finished.

Final Design

Thanks!/Final Questions?

Supplemental Resources

Resources - Electronics Design/Analysis

● Hyperphysics Electronics Pages
● All About Circuits
● LED Resistor Calculator (DigiKey)
● How to Use a Multimeter (SparkFun)

http://hyperphysics.phy-astr.gsu.edu/hbase/Electronic/etroncon.html
https://www.allaboutcircuits.com/
https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-led-series-resistor
https://learn.sparkfun.com/tutorials/how-to-use-a-multimeter

Resources - Schematics

● Electronic Symbols (Wikipedia)
● How to Read a Schematic (SparkFun)
● Adafruit & Sparkfun publish most of their designs as open source, great

references

https://en.wikipedia.org/wiki/Electronic_symbol
https://learn.sparkfun.com/tutorials/how-to-read-a-schematic/all

Resources - EDA

● KiCad
○ Learning Resources
○ Third-Party Libraries
○ KiCad Cheatsheet

● Eagle (part of Fusion360)
○ Guide to make PCBs with Eagle (Adafruit)

● Comparison of EDA Software
● Online Gerber Viewer (GerbLook)

https://www.kicad.org/
https://www.kicad.org/help/learning-resources/
https://www.kicad.org/libraries/third_party/
https://silica.io/wp-content/uploads/2018/06/kicad-cheatsheet-landscape.pdf
https://www.autodesk.com/products/fusion-360/personal
https://learn.adafruit.com/making-pcbs-with-oshpark-and-eagle
https://www.protoexpress.com/blog/10-best-pcb-layout-design-tools-recommended-by-pcb-designers/
https://gerblook.org/

Resources - Hardware

● Parts
○ Digikey (Reliable, direct partner with many manufacturers)
○ Mouser
○ LCSC (Lots of China-based parts)
○ Beware eBay/AliExpress – Many Counterfeit/Recycled/etc. parts

● Datasheets
○ How to Read a Datasheet (SparkFun)
○ List of Integrated Circuit Packaging Types (Wikipedia)

https://www.digikey.com/
https://www.mouser.com/
https://www.lcsc.com/
https://www.sparkfun.com/tutorials/223
https://en.wikipedia.org/wiki/List_of_integrated_circuit_packaging_types

Resources - Prototyping

● Breakout/Dev Boards
○ Adafruit (Great learning resources, open source designs)
○ SparkFun (Great learning resources, open source designs)
○ SeeedStudio (Wide variety of products, much ships from China)

https://www.adafruit.com/
https://www.sparkfun.com/
https://www.seeedstudio.com/

Resources - PCB Art

● Gerbolyze
○ Produces halftone art in gerber format

● svg2shenzhen
○ Convert SVG to complex KiCad Shapes

https://github.com/jaseg/gerbolyze
https://github.com/badgeek/svg2shenzhen

Resources - PCB Fabrication

● Pre-Fab Checklists/Guidelines
○ PCB Basics (SparkFun)
○ OSH Park - Preorder Checklist

● Fabricators
○ OSH Park (Very high quality, fast turn around, local to Portland; Design Rules)
○ JLCPCB (Shenzhen-based, lots of options; Design Rules)
○ PCBWay (Shenzhen-based; Design Rules)

● Process
○ Strange Parts tours JLCPCB - PCB Fabrication (YouTube Video)
○ Strange Parts tours JLCPCB - PCB Assembly w/ Components (YouTube Video)

https://learn.sparkfun.com/tutorials/pcb-basics
https://docs.oshpark.com/submitting-orders/preorder-checklist/
https://oshpark.com/
https://docs.oshpark.com/services/two-layer/
https://jlcpcb.com/
https://jlcpcb.com/capabilities/pcb-capabilities
https://www.pcbway.com/
https://www.pcbway.com/pcb_prototype/PCB_Manufacturing_tolerances.html
https://www.youtube.com/watch?v=ljOoGyCso8s
https://www.youtube.com/watch?v=24ehoo6RX8w

